
TOWARD DOMAIN-SPECIFIC

Some

Greenspan

DESIGN ENVIRONMENTS

Representation Ideas from the Telecommunications Domain

J

Sol Greenspan and Mark Feblowitz

GTE LaboratoriesIncorporated
Computer and Intelligent Systems Lab

40 Sylvan Road
Waltham, Massachusetts 02254

617-466-2962

greenspan@ gte.com

Introduction

ACME 1 is an experimental environment for investigating
new approaches to modeling and analysis of system
requirements and designs. ACME is built on and extends
object-oriented conceptual modeling techniques and
knowledge representation and reasoning (KRR) tools
[Greenspan, eL al. 1991]. The most immediate intended use
for ACME is to help represent, understand, and
communicate system designs during the early stages of
system planning and requirements engineering.

While our research is ostensibly aimed at software
systems in general, we are particularly motivated to make
an impact in the telecommunications domain, especially in
the area referred to as Intelligent Networks [IEEE Comm.,
Dec. 1988], [IEEE Comm., Feb. 1992]. Intelligent
Network (IN) systems contain the software to provide
services to users of a telecommunications network (e.g.,
call processing services, information services, etc.) as well
as the software that provides the internal infrastructure for
providing the services (e.g., resource management, billing,
etc.). The software includes not only systems developed by
the network proprietors but also by a growing group of
independent service software providers.

The kind of software design problem we are interested in
is at a high level. It involves, among other things, deciding
where, in a distributed heterogeneous system, to locate
program logic, data, and other resources; conceptually
speaking, how to assign responsibilities and capabilities for
carrying out the services [Greenspan 1991]. The situation is
often an evolving one: given an existing situation, new
requirements arise, such as the need for a new service or a
new capability, and the design problem is how to (re)design
the system to respond to the change.

1 ACME is an acronym for A Conceptual Modeling
Environment.

We are quite sure that IN systems analysts and designers
use a great deal of domain knowledge to make decisions
about how to design an IN system to meet new
requirements, and that their familiarity with the domain is a
dominant factor affecting the ultimate success of the system
design. The question is what that knowledge is and how it
can be represented in a domain-specific environment. In this
paper, we will briefly survey a few of these representation
ideas and how they contribute to the goal of domain-
specific software design. To the extent that these ideas are
cogent applications of general software engineering
principles, their essence should apply to other domains as
well.

Design from domain-specific building

blocks

In the telecommunications domain, there are several
mandates for having a stable set of building blocks from
which service software can be composed and rapidly
implemented. One impetus for building blocks is the need
for the industry to agree on a basic set of services and
capabilities that can be assumed as universal so that
services can interwork over company and national
boundaries. Another impetus is that the US federal
government seeks to promote fair competition by making
sure that a common set of building blocks is available to
all potential service developers/providers (not only to the
telecommunications network proprietors).

Although the forces that motivate the use of building
blocks may be largely nontechnical or quasi-technical, the
emphasis on a building block approach turns out to be a
valuable idea from a design point of view. It narrows the
search space for solution software because all solutions
must be composed from officially sanctioned building
blocks. Moreover, the resultant software can be more
correct, reliable, and so on, since building blocks are
subject to intense scrutiny and analysis. The building block
approach may appear to bring with it a loss of design

56



freedoms,sincesoftwareisnotallowedtodecomposeinto
arbitrarysoftwarecomponents,butthepremisehereisthat
the gain in manageability of the design process is
worthwhile compensation for this

The essential ideas of a building block approach are as
follows. First, building blocks need to be (a) adequate to
compose the desired set of services, and (b) implemented
effectively in components of the systems that provide the
services. Secondly, building blocks need to be reliably,
efficiently, safely (etc.) implemented in the embedded
system base. Thirdly, the introduction of new building
blocks into the system fabric needs to be a controlled
process. Suppose an organization desires to offer a new
class of services that requires building blocks not already
available in the system; the newly required building blocks
need to be carefully identified, implemented, and tested, and
importantly and nontriviaUy, their interactions with the old
building blocks need to be taken into accounL

It is important not to confuse the building block
approach with the general nodon of reusable components.
The main idea of reuse, in its most general sense, is an
asset management idea, namely that prior investment in
software artifacts (code, specifications, or whatever) can be
capitalized on by reusing the artifacts. If an enterprise
restricts its software development to a specific domain, then
the existence of domain-specific reusable components may
enable one to achieve a higher degree of reuse. It has been
pointed out that domain analysis is a way to achieve this
(e.g., see [Arango & Prieto-Diaz, 1991]). However, this is
still not the idea of building blocks. Reusable components
refer to a library of assets that happen to be available to
designers, while building blocks refer to the set of software
components that have been designed into the system
infrastructure of the operational system.

We suspect that a building block approach is already
being used in other software domains and is worth making
an explicit principle for building domain-specific
environments. Further insights can be gained by drawing
parallels between software development and other forms of
manufacturing, where a set of building blocks (or "pans")
are used to assemble products. Software is different in the
respect that an infinite variety of "parts" can be created,
which is both an opportunity and a management problem.

Domain-specific layering based on design
decisions

In the telecommunications domain, standards groups are
discussing a four-level IN conceptual model [Duran &
Visser 1992] that organizes Intelligent Network systems in
a useful way that might apply to other domains. While the
model itself is not complete in any sense and is continually
evolving, there are some ideas worth noting. We will not
give a literal description of the four-plane IN conceptual
model but rather give a rough summary and extract some of
the key ideas, using vocabulary convenient for the purposes
of this paper.

Groenspan

The layers/planes are roughly the following, from top to
bottom:

1) Services -- The software applications for the end
uscr.

2) Service Building Blocks -- As discussed above,
software components that are used to compose
services and which are provided by the underlying
service-providing system/network.

3) Logical System Entities -- A set of standard
system components (called "functional entities"
by the standards groups), each of which offers
methods that implement the building blocks.

4) Physical System Entities -- A set of available

system components that can be developed or
procured and installed in the embedded base. They
are, conceptually, packages of logical system
entities. Vendors build these.

These planes are usefully chosen so that the relationships
between adjacent levels involve key types of design
decisions. We already discussed the relationship between
Services (level 1) and Service Building Blocks 0evel 2).

The main rationale for level 3, Logical System Entities,
is that the industry needs to have a way of identifying,
specifying, and integrating systems in a vendor-independent
manner. Besides this motivation, level 3 also seems to be
the focal point for several design concerns. Level 3
identifies the perceived infrastructure of logical, service-
providing systems. Elaboration of this plane would describe
the perceived standard subsystems that comprise the
domain, such as making phone calls, billing, reporting
error messages, and so on. This level will be quite rich
with domain-specific content, representing, in effect, a
model of the service-providing enterprise (discussed further
below).

The relationshipbetweenServiceBuildingBlocksand
LogicalSystem Entities(i.e.,between levels2 and 3)
concernhow capabilitiesaredistributedamong logical
systemcomponents.The relationshipbetween Services
(levelI)and LogicalSystem Entities(level3)concern
designdecisionsaboutwhatsystementitiesareresponsible
forplayingvariousrolesinservices.

The desigfidecisionsrelatingLogicaland Physical
SystemEntities(levels3 and 4)mostlyconcerndesigning
a physicalsystemto meet nonfunctionalrequirements.
Logicalsystems will have associatednonfunctional

requirements(e.g.,concerningperformance,reliability,
security,etc.)thatmust be met by thephysicalsystem
entities. The original sources of nonfunctional requirements
might actually be traceable to any of the levels. In any
particular domain, one must identify and specify the
nonfunctional properties that are most critical to success in
that domain. Arguably, the design knowledge about how
designers design physical systems to successfully meet the
nonfunctional properties seems one of the most difficult
subjects to formalize and automate.

This discussion of the four'plane model is intended to
point out some of the more generic (high-level) design
issues that might transfer across domains. The industry has

57



developedother,moredetailed,layeredmodels(suchasthe
seven-layerOSI architecture),which ismore intensely
domain-specificto communicationsand lesslikelyto
transfer.

Enterprise domain knowledge

The domain-specific design environment for systems in our
domain should be able to take advantage of the fact that all
of these systems ultimately are part of an enterprise that
provides services (either to end-users or to internal agents
responsible for tasks necessary for providing the service).
Given what is known about the nature of these systems,
there arc a lot of assumptions and constraints that can be
built into the design environment.

For example, in the domain of telecommunications
services, there are customers who subscribe to services.
Services are tasks performed by service provider agents for
customers, usually involving sensing and changing the
state of objects in the customer environment and
performing communication acts across a network of
objects. It is further known that when a customer signs-up
for (or subscribes to) a service, some service-related objects
may need to be installed (e.g., a telephone at the customer
premises, a wire to the customer's residence, customer
information in a system database -- this is called
"provisioning"). Another part of the domain is that services
are performed in exchange for payment, which requires data
on the use of services by customers. These and other
aspects of the enterprise earl be and should be part of a
domain specific environment for designing systems in that
domain.

One advantage to be gained by ACME from the presence
of enterprise domain knowledge is that model acquisition
can be supported by intelligent assistance, as in
[Reubenstein 1990]. For example, since the assistant
knows that provisioning is done when a new customer
signs up for a service, the system can know something
about what information needs to be specified (and can
partially fill it in).

Designing systems in terms of the enterprise domain
knowledge is much easier than working at a general
systems level. General-purpose CASE environments,
which offer generic concepts such as 0bjects, properties,
entities, processes, and so on, leave too large a semantic
gap between the subject matter and the representation
scheme. (On the other hand, we are in favor of building on
general-purpose modeling concepts; see [Greenspan, et. al.
1991].) In [Greenspan 1991], we actually propose the use
of an intermediate level of domain-specificity, called
Service-Oriented Systems (SOSs), that takes advantage of
some of the knowledge of service-providing systems in our
domain but still remains relatively generic.

Process domain knowledge

The above argument for using domain knowledge can be
extended to process knowledge, namely the process of
designing and developing the system. This is sometimes

Greenspan

called process knowledge or methodology modeling.
Process domain knowledge deals with how the
system/software artifacts are created and how they evolve.
Given that we know that the artifacts we are designing
belong to a specific domain (e.g., systems that provide IN
services), we can specialize our view of the process that
creates these artifacts. We are not creating just programs, or
subsystems -- we are creating services, service-providing
systems, and so on. Each of these concepts refers to a type
of artifact that needs to be designed, maintained, and
evolved. This process domain knowledge needs to be
represented in the environment, too.

A service-providing system in our domain is built (or
evolves) by specific actions such as Create Service, Install
Capability, and so on. These process operations can be
considered as services themselves, where the user is the
software designer/developer/maintainer rather than the usual
service customer. The ability to rapidly create new services
and alter the enterprise systems to provide the services is
critical and therefore comprise important (meta-)services in
themselves.

Thus, we think that work on general models of software
process should be specialized to specific domains.

Summary

By exploring some of the manifestations of domain-
specificity in our domain of IN systems, we have found
some representation concepts that could have parallels in
other domains.

Note how some general SE principles were instantiated
but restricted to impose constraints that help gain control
over the domain.

Domain-specific building blocks are like reusable
components that result from domain analysis of the
services and service-providing systems in the domain.
However, they play a stronger role in constraining
the design.

Domain-specific levels based on design decisions are
similar to levels of abstraction in software

engineering but there is a fixed number of levels. We
do not do an analysis/desigu to find out how many
levels a system will have.

We study systems in the domain and then design a
fixed set of appropriate levels.

Enterprise domain knowledge is similar to knowledge
represented in generic environments. However, this
knowledge is built into the environment (at the recta-
level) to become part of a domain-specific framework.

Process domain knowledge specializes the vocabulary
and tools of the software process, so that domain
experts have a more direct understanding of the
process.

We close by mentioning a couple of issues that could be
discussed at the workshop:

58



How can we build on general-purpose/vanilla methods
and tools? Some fairly we!l-understood vanilla notions of
behavior, function, structure, etc. are converging in AI.
Similarly, some forms of object models, dataflow
diagrams, state-transition, etc. from the CASE world are
becoming fairly standard. We need to understand now to
systematically construct domain-specific structures on top
of (or next to) these.

Axe there some common subdomains whose subject
matter knowledge and design knowledge would be useful
across several different domains? Is anybody working on
representation and reasoning frameworks for important
domains and packaging them to be shared across domains?

What is a "good" high-level design? For example,
suppose high-level design includes assigning
responsibilities to agents and assigning ownership of
resources to agents. Then a "good" design might be one in
which all agents who have responsibility for an action own
the resources needed to carry out the action. However, this
might be too restrictive; a suitable design might be one in
which an agent responsible for an action either owns the
needed resources or has access to an agent who does. This
needs to be developed, and a framework for expressing
designs is needed. (If there is already some work on this, we
would like to become aware of it.)

Greenspan

References

Greenspan, S., M. Feblowitz, C. Shekaran, and J.
Tremlett, 1991. Addressing Requirements Issues Within a
Conceptual Modeling Environment. In Proceedings of the
International Workshop on Software Specification and
Design.

IEEE Communications Magazine, December, 1988. Issue
Featuring Building the Intelligent Network 26(12).

IEEE Communications Magazine, February 1992. Issue
Featuring Intelligent Networks 31(2).

Greenspan, S.1991. Analysis and Design of Composite
Service Systems. In Proceedings of AAAI Symposium on
Composite System Design.

Axango, G.; Prieto-Diaz, R., 1991. Introduction and
Overview: Domain Analysis Concepts and Research
Directions. In Prieto-Diaz, R., and Axango, G. (eds),
Domain Analysis and Software Systems Modeling, IEEE
Computer Society Press, 1991.

Duran, J.; Visser,'J., 1992. International Standards for
Intelligent Networks. in [IEEE Comm., Feb. 1992].

Reubenstein, H., 1990. Automated Acquisition of
Evolving Informal Descriptions. Ph.D. diss., M.I.T.
Technical Report 1205.

59


